Breast cancer masses classification using deep convolutional neural networks and transfer learning
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-020-09518-w.pdf
Reference40 articles.
1. Abbas Q (2016) DeepCAD: a computer-aided diagnosis system for mammographic masses using deep invariant features. Computers 5(4):28. https://doi.org/10.3390/computers5040028
2. Abbas A, Abdelsamea MM, Gaber MM (2020) Detrac: transfer learning of class decomposed medical images in convolutional neural networks. IEEE Access 8:74901–74913
3. Abdelhafiz D, Yang C, Ammar R, Nabavi S (2019) Deep convolutional neural networks for mammography: advances, challenges and applications. BMC bioinformatics 20(11):281
4. Agarwal R, Diaz O, Lladó X, Yap MH, Martí R (2019) Automatic mass detection in mammograms using deep convolutional neural networks. Journal of Medical Imaging 6(3):031409
5. Agnes SA, Anitha J, Pandian SIA, Peter JD (2020) Classification of mammogram images using multiscale all convolutional neural network (MA-CNN). J Med Syst 44:30. https://doi.org/10.1007/s10916-019-1494-z
Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An optimized ensemble classifier for mammographic mass classification;Computers and Electrical Engineering;2024-10
2. GBE-Net: Global Boundary Enhancement Network for breast lesion segmentation in ultrasound images;Biomedical Signal Processing and Control;2024-10
3. A novel hybrid deep CNN model for breast cancer classification using Lipschitz-based image augmentation and recursive feature elimination;Biomedical Signal Processing and Control;2024-09
4. BI-RADS classification of breast masses based on deep contourlet features;Multimedia Tools and Applications;2024-08-22
5. Optimization of ReLU Activation Function for Deep-Learning-based Breast Cancer Classification on Mammogram Images;2024 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS);2024-06-29
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3