Frequency separation-based multi-scale cascading residual block network for image super resolution
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-021-11724-z.pdf
Reference41 articles.
1. Alkanha L, Alotaibi D, Albrahim N, Alrayes S and Bchir O (2020) Super-resolution using deep learning to support person identification in surveillance video. International Journal of Advanced Computer Ence and Applications 11(7)
2. Arbelez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(5):898–916
3. Bevilacqua M, Roumy A, Guillemot C, Morel MA (2012) Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: Proceedings of the British machine vision conference. BMVA Press, pp 135.1–135.10
4. Dong C, Loy CC, Tang X (2016) Accelerating the super-resolution convolutional neural network. CoRR, vol abs/1608.00367
5. Dong C, Loy CC, He K, Tang X (2014) Learning a deep convolutional network for image super-resolution. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T (eds) Computer vision – ECCV 2014. Springer International Publishing, Cham, pp 184–199
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A deep neural network approach with attention mechanism to improve the quality of target observation for UAVs;Computers & Industrial Engineering;2024-04
2. Dynamic feature distillation and pyramid split large kernel attention network for lightweight image super-resolution;Multimedia Tools and Applications;2024-03-02
3. A Review of Single Image Super Resolution Techniques using Convolutional Neural Networks;Multimedia Tools and Applications;2023-09-13
4. Two-subnet network for real-world image denoising;Multimedia Tools and Applications;2023-07-08
5. A contrastive learning-based iterative network for remote sensing image super-resolution;Multimedia Tools and Applications;2023-06-16
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3