Enhancing fetal electrocardiogram classification: A hybrid approach incorporating multimodal data fusion and advanced deep learning models
Author:
Funder
no
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-023-17305-6.pdf
Reference63 articles.
1. Rahman S, Karmakar C, Yearwood J, Palaniswami M (2022) A real-time tunable ECG noise-aware system for IoT-enabled devices. IEEE Sensors J 22(23):23277–23285. https://doi.org/10.1109/JSEN.2022.3211318
2. Lee S-Y, Hung Y-W, Su P-H, Lee I-P, Chen J-Y (2022) Biosignal monitoring clothing system for the acquisition of ECG and respiratory signals. IEEE Access 10:66083–66097. https://doi.org/10.1109/ACCESS.2022.3183968
3. Da Poian G, Bernardini R, Rinaldo R (2016) Separation and analysis of fetal-ECG signals from compressed sensed abdominal ECG recordings. IEEE Trans Biomed Eng 63(6):1269–1279. https://doi.org/10.1109/TBME.2015.2493726
4. Lin C, Yeh C-H, Wang C-Y et al (2019) Robust fetal heart beat detection via R-peak intervals distribution. IEEE Trans Biomed Eng 66(12):3310–3319. https://doi.org/10.1109/TBME.2019.2904014
5. Ziani S, Jbari A, Belarbi L (2017) Fetal electrocardiogram characterization by using only the continuous wavelet transform CWT. In: International conference on electrical and information technologies (ICEIT), Rabat, pp 1–6. https://doi.org/10.1109/EITech.2017.8255310
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Integrating Contrastive Learning and Cycle Generative Adversarial Networks for Non-invasive Fetal ECG Extraction;Pediatric Cardiology;2024-09-02
2. Characterization of cardiac resynchronization therapy response through machine learning and personalized models;Computers in Biology and Medicine;2024-09
3. A Historical Survey of Advances in Transformer Architectures;Applied Sciences;2024-05-20
4. Enhancing Fetal Electrocardiogram Signal Extraction Accuracy through a CycleGAN Utilizing Combined CNN–BiLSTM Architecture;Sensors;2024-05-06
5. An insight in the future of healthcare: integrating digital twin for personalized medicine;Health and Technology;2024-04-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3