A comprehensive survey of various methods in opinion spam detection
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-022-13702-5.pdf
Reference162 articles.
1. Aghakhani H, Machiry A, Nilizadeh S, Kruegel C, Vigna G (2018) Detecting deceptive reviews using generative adversarial networks. 2018 IEEE Secu-rity and Privacy Workshops (SPW). https://doi.org/10.1109/spw.2018.00022
2. Ahmed H, Traore I, Saad S (2017) Detecting opinion spams and fake news usingtext classification. Security and Privacy, 1(1). https://doi.org/10.1002/spy2.9
3. Akoglu L, Chandy R, Faloutsos C (2013) Opinion fraud detection in online reviews by network effects. In Proceedings of the International AAAI Conference on Web and Social Media. 7(1):2–11
4. Al Najada H, Zhu X (2014) iSRD: Spam review detection with imbalanced data distributions. In Proceedings of the 2014 IEEE 15th international conference on information reuse and integration (IEEE IRI 2014). pp. 553–560. IEEE.
5. Algur SP, Patil AP, Hiremath PS, Shivashankar S (2010) Conceptual level similarity measure based review spam detection. In 2010 International Conference on Signal and Image Processing (pp. 416–423). IEEE.
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Efficient Detection of Irrelevant User Reviews Using Machine Learning;Applied Sciences;2024-08-07
2. A semantic-based model with a hybrid feature engineering process for accurate spam detection;Journal of Electrical Systems and Information Technology;2024-07-15
3. Unveiling suspicious phishing attacks: enhancing detection with an optimal feature vectorization algorithm and supervised machine learning;Frontiers in Computer Science;2024-07-02
4. Predicting E-commerce customer satisfaction: Traditional machine learning vs. deep learning approaches;Journal of Retailing and Consumer Services;2024-07
5. SUH-AIFRD: A self-training-based hybrid approach for individual fake reviewer detection;Multimedia Tools and Applications;2024-01-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3