WebLabel: OpenLABEL-compliant multi-sensor labelling

Author:

Urbieta ItziarORCID,Mujika Andoni,Piérola Gonzalo,Irigoyen Eider,Nieto Marcos,Loyo Estibaliz,Aginako Naiara

Abstract

AbstractAnnotated datasets have become crucial for training Machine Learning (ML) models for developing Autonomous Vehicles (AVs) and their functions. Generating these datasets usually involves a complex coordination of automation and manual effort. Moreover, most available labelling tools focus on specific media types (e.g., images or video). Consequently, they cannot perform complex labelling tasks for multi-sensor setups. Recently, ASAM published OpenLABEL, a standard designed to specify an annotation format flexible enough to support the development of automated driving features and to guarantee interoperability among different systems and providers. In this work, we present WebLabel, the first multipurpose web application tool for labelling complex multi-sensor data that is fully compliant with OpenLABEL 1.0. The proposed work analyses several labelling use cases demonstrating the standard's benefits and the application's flexibility to cover various heterogeneous requirements: image labelling, multi-view video object annotation, point-cloud view-based labelling for 3D geometries and action recognition.

Funder

Eusko Jaurlaritza

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Reference30 articles.

1. Lin T-Y et al (2014) Microsoft COCO: Common Objects in Context. https://doi.org/10.48550/arxiv.1405.0312

2. ASAM e.V. (2021) ASAM OpenODD Concept Project, ASAM OpenODD Concept Project. https://www.asam.net/project-detail/asam-openodd. Accessed 11 Sep 2022

3. ASAM e.V. (2022) ASAM OpenSCENARIO: User Guide. https://www.asam.net/index.php?eID=dumpFile&t=f&f=4908&token=ae9d9b44ab9257e817072a653b5d5e98ee0babf8. Accessed 21 Aug 2022

4. ASAM e.V. (2020) ASAM OpenLABEL Concept Paper. https://www.asam.net/index.php?eID=dumpFile&t=f&f=3876&token=413e8c85031ae64cc35cf42d0768627514868b2f. Accessed 25 Sep 2022

5. Everingham M, Eslami SMA, van Gool L, Williams CKI, Winn J, Zisserman A (2015) The Pascal Visual Object Classes Challenge: A Retrospective. Int J Comput Vis 111(1):98–136. https://doi.org/10.1007/s11263-014-0733-5

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3