Data mining tools -a case study for network intrusion detection

Author:

Hosseini Soodeh,Sardo Saman Rafiee

Abstract

AbstractWith the growth of data mining and machine learning approaches in recent years, many efforts have been made to generalize these sciences so that researchers from any field can easily utilize these sciences. One of the most important of these efforts is the development of data mining tools that try to hide the complexities from researchers so that they can achieve a professional output with any level of knowledge. This paper is focused on reviewing and comparing data mining and machine learning tools including WEKA, KNIME, Keel, Orange, Azure, IBM SPSS Modeler, R and Scikit-Learn to show what approach each of these methods has taken in the face of the complexities and problems of different scenarios of generalization of data mining and machine learning. In addition, for a more detailed review, this paper examines the challenge of network intrusion detection in two tools, Knime with graphical interface and Scikit-Learn with coding environment.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Hardware and Architecture,Media Technology,Software

Reference36 articles.

1. Abdar M (2015) A survey and compare the performance of IBM SPSS modeler and rapid miner software for predicting liver disease by using various data mining algorithms. J Sci (CSJ) 36:1–12

2. Alcalá-Fdez J, Fernández A, Luengo J, Derrac J, García S, Sánchez L, Herrera F (2011) Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J Multiple-Valued Logic Soft Comput 17:255–287

3. Altalhi AH, Luna JM, Vallejo M, Ventura S (2017) Evaluation and comparison of open source software suites for data mining and knowledge discovery. Wiley Interdisc Rev: Data Mining Knowl Discov 7(3):e1204

4. Batista GE, Monard MC (2003) An analysis of four missing data treatment methods for supervised learning. Appl Artif Intell 17(5–6):519–533

5. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Thiel K, Wiswedel B (2009) KNIME-the Konstanz information miner: version 2.0 and beyond. AcM SIGKDD Explorations Newslett 11(1):26–31

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3