Assessment of fungal aerosols in a public library with natural ventilation

Author:

Camargo Caicedo YinivaORCID,Borja Pérez Hilary,Muñoz Fuentes Maryann,Vergara-Vásquez Eliana,Vélez-Pereira Andrés M.ORCID

Abstract

AbstractFungal aerosols deteriorate library collections and can impact human health, mainly via respiratory diseases. Their spread is influenced by factors such as temperature and relative humidity. This study aims to assess the concentration of fungal aerosols in the interior environment of the Popular Library of Gaira in the District of Santa Marta, Colombia, using a two-stage cascade impactor utilizing Sabouraud dextrose agar on Petri dishes for the collection of samples. The sampler was positioned at 1.5 m above ground level, operated with a flow rate of 28.3 l/min for 4 min and thermo-hygrometric conditions were also recorded. Concentrations in the air of up to 1197.0 CFU/m3 were reported, with a mean value close to 150 CFU/m3. Higher values during the morning samples were noted. Seven genera of fungi were found, Aspergillus and Curvularia were the most abundant. The temperature was between 30.80 and 33.51 °C, and the relative humidity was between 62.61 and 64.80%. Statistical analysis showed a significant correlation between the fungal aerosol concentration and relative humidity, where an increase of 10% in moisture could double the fungal aerosol concentration. We concluded that potentially favorable conditions exist indoors for the growth and survival of the following fungi: Aspergillus, Penicillium, Cladosporium, and Curvularia, and to a lesser extent for Chrysonilia, Cunninghamella, and Paecylomices. Relative humidity was seen to be the factor that affects the concentration of aerosols fungal in the library most significantly.

Funder

University of the Magdalena

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Immunology,Immunology and Allergy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3