Assessment of exposure to fungi in archives and libraries based on analyses of filter and nasal samples: preliminary investigation

Author:

Cyprowski MarcinORCID,Ławniczek-Wałczyk AnnaORCID,Stobnicka-Kupiec AgataORCID,Gołofit-Szymczak MałgorzataORCID,Górny Rafał L.ORCID

Abstract

AbstractThe aim of this study was to characterize the occupational exposure to inhalable dust and airborne fungi among archive and library workers based on qualitative and quantitative analyses of stationary and personal filter samples as well as nasal swabs. The study was carried out in 3 archives and 2 libraries and involved 9 workers of these institutions. Airborne fungi and inhalable dust samples were collected by stationary and personal measurements using filter samplers. Additionally, the nasal swabs from workers were taken after work-shift and microbiologically analysed. The average concentrations of inhalable dust and airborne fungi were 49 µg/m3 (SD = 91) and 299 CFU/m3 (SD = 579), respectively. Both dust and bioaerosol concentrations obtained using personal measurements were significantly higher than that measured by stationary sampling. The correlation analysis showed strong relationships between the concentrations of inhalable dust and airborne fungi (R = 0.57; p < 0.001). The fungal concentrations in swab samples from archive workers (median: 104 CFU/ml) were significantly higher than that in swabs from librarians (median: 1.4 CFU/ml). Among the airborne fungi, the widest spectrum of species was found among Penicillium and Aspergillus (including pathogenic A. fumigatus) genera. However, in samples from archives, yeast-like fungi from Sporidiobolus and Candida (including pathogenic C. albicans) genera predominated among isolated mycobiota. The results of this study revealed that airborne fungi were able to efficiently contaminate the nasal cavity of archive and library employees. The analysis of nasal swabs can be considered as an important analytical tool supporting the assessment of workers’ exposure to bioaerosols.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3