Combined synoptic and regional weather patterns affecting atmospheric Poaceae pollen concentrations in Sydney, Australia

Author:

Waudby Charlotte M.ORCID,Sherwood Steven C.ORCID,Osborne Nicholas J.ORCID,Beggs Paul J.ORCID,Al-Kouba Jane,Ebert Elizabeth E.ORCID,Muscatello David J.

Abstract

AbstractInhalation of grass pollen can result in acute exacerbation of asthma, prompting questions about how grass pollen reaches metropolitan areas. We establish typical atmospheric Poaceae (grass) pollen concentrations recorded at two pollen samplers within the Sydney basin in eastern Australia and analyse their correlation with each other and meteorological variables. We determine the effect of synoptic and regional airflow on Poaceae pollen transport during a period of extreme (≥ 100 grains m−3 air) concentration and characterise the meteorology. Finally, we tested the hypothesis that most Poaceae pollen captured by the pollen samplers originated from local sources. Fifteen months of daily pollen data, three days of hourly atmospheric Poaceae pollen concentrations and fifteen months of hourly meteorology from two locations within the Sydney basin were used. Weather Research Forecasting (WRF), Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) modelling and conditional bivariate probability functions (CBPF) were used to assess Poaceae pollen transport. Most Poaceae pollen collected was estimated to be from local sources under low wind speeds. Extreme daily Poaceae pollen concentrations were rare, and there was no strong evidence to support long-distance Poaceae pollen transport into the Sydney basin or across the greater Sydney metropolitan area. Daily average pollen concentrations mask sudden increases in atmospheric Poaceae pollen, which may put a significant and sudden strain on the healthcare system. Mapping of Poaceae pollen sources within Sydney and accurate prediction of pollen concentrations are the first steps to an advanced warning system necessary to pre-empt the healthcare resources needed during pollen season.

Funder

University of New South Wales

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Immunology,Immunology and Allergy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3