Author:
Kim Chaeyoung,Shin Sungtae,Jeong Sehoon
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Reference49 articles.
1. López, C., M. Lejeune, R. Bosch, A. Korzynska, M. García-Rojo, M.-T. Salvadó, T. Álvaro, C. Callau, A. Roso, and J. Jaén (2012) Digital image analysis in breast cancer: an example of an automated methodology and the effects of image compression. Stud. Health Technol. Inform. 179: 155–171.
2. Rahaman, M. M., C. Li, Y. Yao, F. Kulwa, X. Wu, X. Li, and Q. Wang (2021) DeepCervix: a deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques. Comput. Biol. Med. 136: 104649.
3. Kitchener, H. C., R. Blanks, G. Dunn, L. Gunn, M. Desai, R. Albrow, J. Mather, D. N. Rana, H. Cubie, C. Moore, R. Legood, A. Gray, and S. Moss (2011) Automation-assisted versus manual reading of cervical cytology (MAVARIC): a randomised controlled trial. Lancet Oncol. 12: 56–64.
4. Xiao, Y., J. Wu, Z. Lin, and X. Zhao (2018) A deep learning-based multi-model ensemble method for cancer prediction. Comput. Methods Programs Biomed. 153: 1–9.
5. LeCun, Y., Y. Bengio, and G. Hinton (2015) Deep learning. Nature 521: 436–444.