DDOS Botnets Attacks Detection in Anomaly Traffic: A Comparative Study.

Author:

Elsherif Ahmed A.,Aldaej Arwa A.

Abstract

One of the major challenges that faces the acceptance and growth rate of business and governmental sites is a Botnet-based DDoS attack. A flooding DDoS strikes a victim machine by means of sending a vast amount of malicious traffic, causing a significant drop in the service quality (QoS) in IoT devices. Nonetheless, it is not that easy to detect and tackle flooding DDoS attacks, owing to the significant number of attacking machines, the usage of source-address spoofing, and the common areas shared between legitimate and malicious traffic. New kinds of attacks are identified daily, and some remain undiscovered, accordingly, this paper aims to improve the traffic classification algorithm of network traffic, that hackers use to try to be ambiguous or misleading. A recorded simulated traffic was used for both samples; normal and DDoS attack traffic, approximately 104.000 cases of each, where both datasets -which were created for this study- represent the input data in order to create a classification model, to be used as a tool to mitigate the risk of being attacked. The next step is putting datasets in a format suitable for classification. This process is done through preprocessing techniques, to convert categorical data into numerical data. A classification process is applied to capture datasets, to create a classification model, by using five classification algorithms which are; Decision Tree, Support Vector Machine, Naive Bayes, K-Neighbours and Random Forest. The core code used for classification is the python code, which is controlled by a user interface. The highest prediction, precision and accuracy are obtained using the Decision Tree and Random Forest classification algorithms, which also have the lowest processing time.

Publisher

Naif Arab University for Security Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cyber Attacks Classification on Enriching IoT Datasets;EAI Endorsed Transactions on Internet of Things;2023-08-14

2. Big Data Approach For IoT Botnet Traffic Detection Using Apache Spark Technology;2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC);2023-03-08

3. EHML: An Efficient Hybrid Machine Learning Model for Cyber Threat Forecasting in CPS;2023 International Conference on Artificial Intelligence and Smart Communication (AISC);2023-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3