TRIPLE TORTKEN IDENTITIES

Author:

Mardanov N. A.1ORCID

Affiliation:

1. Kazakh-British Technical University

Abstract

We define a triple Tortken product in Novikov algebras. Using computer algebra calculations, we give a list of polynomial identities up to degree 5 satisfied by Tortken triple product in every Novikov algebra. It has applications in theoretical physics, specifically in the field of quantum field theory and topological field theory. A Novikov algebra is defined as a vector space equipped with a binary operation called the Novikov bracket. The Jacobi identity ensures that the Novikov bracket behaves analogously to the commutator in Lie algebras. However, unlike Lie algebras, Novikov algebras are non-associative due to the presence of the Jacobi identity rather than the associativity condition. Novikov algebras find applications in theoretical physics, particularly in the study of topological field theories and quantum field theories on noncommutative spaces. They provide a framework for describing and analyzing certain algebraic structures that arise in these areas of physics. It's worth noting that Novikov algebras are a specific type of non-associative algebra, and there are various other types of non-associative algebras studied in mathematics and physics, each with its own defining properties and applications.

Publisher

Kazakh-British Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3