Abstract
Recycled aggregate brick (RAB) constitutes a significant waste stream in developed countries, originating from brick manufacturing and demolition processes. This paper investigates the potential utilization of various sizes of RAB as replacements for natural aggregate (NA) in cement-treated bases (CTB), along with an assessment of their mechanical and environmental properties. The study includes a life cycle analysis to evaluate the environmental impacts of different CTB formulations. The novelty of this study lies in the environmental evaluation of four types of CTB, including natural, recycled, and mixed CTB. The physical and mechanical properties of the recycled brick and natural materials are characterized and compared. Results indicate that recycled brick aggregates, when combined with a cement mixture, can be used as a base and sub-base layer with good mechanical performance. Moreover, environmental analyses demonstrate that recycled aggregate generates fewer impacts than natural aggregates. Consequently, this study suggests that the utilization of recycled aggregates brick in CTB offers a sustainable waste management solution while simultaneously contributing to the reduction of environmental impacts associated with construction activities.
Reference37 articles.
1. Mezhoud S. et al., “Field investigations on injection method for sealing longitudinal reflective cracks,” Journal of Performance of Constructed Facilities, vol. 32, no. 4, (2018), pp. 04018041. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001186
2. Li J. et al., “Life cycle assessment and life cycle cost analysis of recycled solid waste materials in highway pavement: A review,” Journal of Cleaner Production, vol. 233, October 2019, pp. 1182-1206. https://doi.org/10.1016/j.jclepro.2019.06.061
3. Mezhoud S. et al., “Forensic investigation of causes of premature longitudinal cracking in a newly constructed highway with a composite pavement system,” Journal of Performance of Constructed Facilitie, vol. 31, no. 2, (2017), pp. 04016095. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000956
4. Mezhoud S. et al., “Valorisation des fraisât routiers et produits de démolition pour la fabrication de mélanges granulaires traites aux liants hydrauliques,” Algerian Journal of Environmental Science and Technology, vol. 3, no. 3, 2017.
5. Salehi S. et al., “Sustainable pavement construction: A systematic literature review of environmental and economic analysis of recycled materials,” Journal of Cleaner Production, vol. 313, September 2021, pp.127936. https://doi.org/10.1016/j.jclepro.2021.127936
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献