Comparative analysis of selected object-relational mapping systems for the .NET platform

Author:

Drzazga Krzysztof,Bobel Marcin,Skublewska-Paszkowska Maria

Abstract

This article is devoted to the comparison of two object-relational mapping systems supported by .NET platform - Entity Framework Core and NHibernate. The research hypothesis “framework NHibernate is more efficient than Entity Framework Core in the context of DML operations” was put forward. In order to make an efficiency analysis of ORM frameworks, a desktop application was designed and implemented to enable testing and visualization of results. The NHibernate framework turned out to be much more efficient than Entity Framework Core in single tests and slightly faster in bulk tests. The stability of both frameworks was similar.

Publisher

Politechnika Lubelska

Subject

Polymers and Plastics,General Environmental Science

Reference10 articles.

1. Object-relational mapping, https://en.wikipedia.org/wiki/Object-relational_mapping, [16.06.2020]

2. Borys P., Pańczyk B.: Wydajność pracy z bazami danych w aplikacjach ASP.NET MVC. Journal of Computer Science Institute 6, 2018.

3. Zmaranda D., Pop-Fele L-L., Győrödi C., Győrödi R., Pecherle Performance Comparison of CRUD Methodsusing NET Object Relational Mappers: A Case Study (IJACSA) International Journal of Advanced Computer Science and Applications,Vol. 11, No.1, 2020.

4. Wiphusitphunpol W., Letrusdachakul T.: Fetch performance comparison of object relational mapper in .NET platform. [W]: 14th International Conference on Electrical Engineering/Electronics, IEEE, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Tajlandia 7 listopada 2017 r.

5. Cvetković S., Janković D.: A Comparative Study of the Features and Performance of ORM Tools in a .NET Environment. [W]: Objects and Databases ICOODB 2010. Lecture Notes in Computer Science, vol 6348. Springer, Berlin, Heidelberg. Frankfurt, Niemcy. 28-30 września 2010 r.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3