Abstract
This paper presents the analysis of complex problems in the field of energy savings and it is focused on the new concept of thermal analysis derived from harmonic character of temperature changes in building environment – especially in a fruit storages – with aspect on conductive heat transfers through walls. This changeable influence of variable weather temperature on internal temperature of technical chamber depends on thermal inertia of building. The paper describes research work on methods concerning heat transfers through walls of thermal technical chambers in the impact of sinusoidal nature of the changes in atmospheric temperature. The purpose for the research is to point out areas subjected to the highest energy losses caused by building’s construction and geographical orientation of walls in the aspect of daily atmospheric temperature changes emerging on chamber exterior. The paper presents exemplary measurement results taken in Lublin region during various periods throughout a year.
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Computer Science Applications,Economics, Econometrics and Finance (miscellaneous),Mechanical Engineering,Biomedical Engineering,Information Systems,Control and Systems Engineering
Reference15 articles.
1. Bzowska, D. (2005). Natural ventilation induced by weather parameters in two-zone building. Archives of Civil Engineering, 51(1), 135–151.
2. Calderaro, V., & Agnoli, S. (2007). Passive heating and cooling strategies in an approaches of retrofit in Rome. Energy and Buildings, 39(8), 875–885. https://doi.org/10.1016/j.enbuild.2006.10.008
3. Chwieduk, D. (2006). Modelowanie i analiza pozyskiwania oraz konwersji termicznej energii promieniowania słonecznego w budynku. Warszawa: Prace Instytutu Podstawowych Problemów Techniki PAN.
4. Dzieniszewski, W. (2005). Procesy cieplno-przepływowe w budynkach: podstawy modelowania matematycznego. Łódź: Komitet Inżynierii Lądowej i Wodnej PAN.
5. Etheridge, D. (2002). Nondimensional methods for natural ventilation design. Building and Environment, 37(11), 1057-1072. https://doi.org/10.1016/S0360-1323(01)00091-9