Object classification using X-ray images

Author:

Nowosad Piotr,Charytanowicz Małgorzata

Abstract

The main aim of the presented research was to assess the possibility of utilizing geometric features in object classification.Studies were conducted using X-ray images of kernels belonging to three different wheat varieties: Kama, Canadian andRosa. As a part of the work, image processing methods were used to determine the main geometric grain parameters,including the kernel area, kernel perimeter, kernel length and kernel width. The results indicate significant differencesbetween wheat varieties, and demonstrates the importance of their size and shape parameters in the classification process.The percentage of correctness of classification was about 92% when the k-Means algorithm was used. A classificationrate of 93% was obtain using the K-Nearest Neighbour and Support Vector Machines. Herein, the Rosa variety was betterrecognized, whilst the Canadian and Kama varieties were less successfully differentiated.

Publisher

Politechnika Lubelska

Subject

Polymers and Plastics,General Environmental Science

Reference22 articles.

1. R. C. Gonzalez, R. E. Woods, Digital Image Processing, Prentice-Hall Inc., New Jersey, 2002.

2. R. Tadeusiewicz, Komputerowa analiza i przetwarzanie obrazów, Wydawnictwo Fundacji Postępu Telekomunikacji, Kraków 1997.

3. B. Mirkin, Clustering: A Data Recovery Approach, Chapman and Hall/CRC, 2012.

4. D. F. Morrison, Multivariate Statistical Methods, Brooks/Cole Thomson Learning, Belmont, California, 2005.

5. M. Romaniuk, O. Hryniewicz, Interval based, nonparametric approach for resampling of fuzzy numbers. 2019, Soft Computing, 23 (14), 5883–5903.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3