IMPLEMENTATION OF DYNAMIC AND FAST MINING ALGORITHMS ON INCREMENTAL DATASETS TO DISCOVER QUALITATIVE RULES

Author:

Naresh Pannangi,Suguna R.

Abstract

Association Rule Mining is an important field in knowledge mining that allows the rules of association needed for decision making. Frequent mining of objects presents a difficulty to huge datasets. As the dataset gets bigger and more time and burden to uncover the rules. In this paper, overhead and time-consuming overhead reduction techniques with an IPOC (Incremental Pre-ordered code) tree structure were examined. For the frequent usage of database mining items, those techniques require highly qualified data structures. FIN (Frequent itemset-Nodeset) employs a node-set, a unique and new data structure to extract frequently used Items and an IPOC tree to store frequent data progressively. Different methods have been modified to analyze and assess time and memory use in different data sets. The strategies suggested and executed shows increased performance when producing rules, using time and efficiency.

Publisher

Politechnika Lubelska

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Computer Science Applications,Economics, Econometrics and Finance (miscellaneous),Mechanical Engineering,Biomedical Engineering,Information Systems,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Heart Attack Prediction Accuracy through Optimized Machine Learning and Deep Learning: A Survey;International Journal of Advanced Research in Science, Communication and Technology;2024-08-22

2. Machine Learning Techniques to Optimize CPU Scheduling in Real-Time Systems: A Comprehensive Review and Analysis;International Journal of Advanced Research in Science, Communication and Technology;2024-06-24

3. High Dimensional Text Classification using Unsupervised Machine Learning Algorithm;2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2024-06-05

4. Deep Learning based Object Tracking and Detection for Autonomous Drones using YOLOv3;2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2024-06-05

5. Narrow Stock Trends using Machine Learning Techniques;2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA);2023-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3