Abstract
This paper presents the results of a preliminary study on simplified diagnosis of osteoarthritis of the knee joint based on generated vibroacoustic processes. The analysis was based on acoustic signals recorded in a group of 50 people, half of whom were healthy, and the other half - people with previously confirmed degenerative changes. Selected discriminants of the signals were determined and statistical analysis was performed to allow selection of optimal discriminants used at a later stage as input to the classifier. The best results of classification using artificial neural networks (ANN) of RBF (Radial Basis Function) and MLP (Multilevel Perceptron) types are presented. For the problem involving the classification of cases into one of two groups HC (Healthy Control) and OA (Osteoarthritis) an accuracy of 0.9 was obtained, with a sensitivity of 0.885 and a specificity of 0.917. It is shown that vibroacoustic diagnostics has great potential in the non-invasive assessment of damage to joint structures of the knee.
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Computer Science Applications,Economics, Econometrics and Finance (miscellaneous),Mechanical Engineering,Biomedical Engineering,Information Systems,Control and Systems Engineering
Reference62 articles.
1. Ahn, J. M., & El-Khoury, G. Y. (2006). Computed Tomography of Knee Injuries. Imaging Decisions MRI, 10(1), 14–23. https://doi.org/10.1111/j.1617-0830.2006.00063.x
2. Arendt, E. A., Miller, L. E., & Block, J. E. (2014). Early knee osteoarthritis management should first address mechanical joint overload. Orthopedic Reviews, 6(1). https://doi.org/10.4081/or.2014.5188
3. Badurowicz, M. (2022). Detection of source code in internet texts using automatically generated machine learning models. Applied Computer Science. Applied Computer Science, 18(1), 89–98. https://doi.org/10.23743/acs-2022-07
4. Bauer, L., Stütz, L., & Kley, M. (2021). Black box efficiency modelling of an electric drive unit utilizing methods of machine learning. Applied Computer Science, 17(4), 5–19. https://doi.org/10.23743/acs-2021-25
5. Będziński, R. (1997). Biomechanika inżynierska: Zagadnienia wybrane. Oficyna Wydawnicza Politechniki Wrocławskiej.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献