Author:
RAMANATHAN Kuppan Chetty,MOHAN Manju,AROCKIA DHANRAJ Joshuva
Abstract
This work addresses the development of a distributed switching control strategy to drive the group of mobile robots in both backward and forward motion in a tightly coupled geometric pattern, as a solution for the deadlock situation that arises while navigating the unknown environment. A generalized closed-loop tracking controller considering the leader referenced model is used for the robots to remain in the formation while navigating the environment. A tracking controller using the simple geometric approach and the Instantaneous Centre of Radius (ICR), to drive the robot in the backward motion during deadlock situation is developed and presented. State-Based Modelling is used to model the behaviors/motion states of the proposed approach in MATLAB/STATEFLOW environment. Simulation studies are carried out to test the performance and error dynamics of the proposed approach combining the formation, navigation, and backward motion of the robots in all geometric patterns of formation, and the results are discussed.
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Computer Science Applications,Economics, Econometrics and Finance (miscellaneous),Mechanical Engineering,Biomedical Engineering,Information Systems,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献