A METHOD OF VERIFYING THE ROBOT'S TRAJECTORY FOR GOALS WITH A SHARED WORKSPACE
-
Published:2022-03-30
Issue:1
Volume:18
Page:37-44
-
ISSN:2353-6977
-
Container-title:Applied Computer Science
-
language:
-
Short-container-title:acs
Author:
ANCZARSKI Jakub,BOCHEN Adrian,GŁĄB MArcin,JACHOWICZ Mikolaj,CABAN Jacek,CECHOWICZ Radosław
Abstract
The latest market research (Fanuc Polska 2019) shows that the robotization of the Polish industry is accelerating. More and more companies are investing in robotic production lines, which enable greater efficiency of implemented processes and reduce labour costs. The article presents the possibilities of using virtual reality (VR) for behavioural analysis in open robotic systems with a shared workspace. The aim of the article is to develop a method of verification of programmed movements of an industrial robot in terms of safety and efficiency in systems with a shared workspace. The method of the robot program verification on the digital model of the working cell made in VR will be checked. The obtained research results indicate a great potential of this method in industrial applications as well as for educational purposes.
Publisher
Politechnika Lubelska
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Computer Science Applications,Economics, Econometrics and Finance (miscellaneous),Mechanical Engineering,Biomedical Engineering,Information Systems,Control and Systems Engineering
Reference32 articles.
1. Bistak, M., Medvecky, S., Gajdosova, E., Dzimko, M., Gramblicka, S., Kohar, R., Stopka, M., Steininger, J., Hrcek, S., Tropp, M., & Brumercik, F. (2017). Applications of modern technologies in the production of aircraft propeller prototype. Communications - Scientific Letters of the University of Zilina, 19(2), 54–59. https://doi.org/10.26552/com.C.2017.2A.54-59 2. Blatnický, M., Dižo, J., Barta, D., & Droździel, P. (2020). FEM analysis of main parts of a manipulator for mountig a compressor to a car equipped with a pneumatic suspension system. Diagnostyka, 21(2), 87–94. https://doi.org/10.29354/diag/122549 3. Blatnický, M., Dižo, J., Gerlici, J., Sága, M., Lack, T., & Kuba, E. (2020). Design of a robotic manipulator for handling products of automotive industry. International Journal of Advanced Robotic Systems, 17(1), 1–11. https://doi.org/10.1177/1729881420906290 4. Blatnický, M., Dižo, J., & Timošcuk, M. (2016). Design of a three-finger robot manipulator. Manufacturing Technology, 16(3), 485–489. 5. Bogucki, M., Stączek, P., & Płaska, S. (2003). Methods of improving quality product and process using experimental techniques. Second International CAMT Conference (Centre for Advanced Manufacturing Technologies), Modern Trends in Manufacturing (pp. 15–20).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|