Abstract
Persistent growth of information in recent decades, along with the development of new information technologies for its management, have made it essential to develop systems that allow to synthesize this massive information or better known as big data. In this article, a feedback based system for massive processing of digital newspapers is presented. This system synthesizes the most relevant information from different news stories obtained from several sources. System is fed with information from the Internet using web scraping techniques. All this information is stored in a data lake which has been implemented using NoSQL databases. Next, data processing is performed, focusing on words, their relevance, and their correlation with other words from related content groups or headlines. In order to perform this aggrupation, machine learning Large Language Model (LLM), K Nearest Neighbors (KNN) and text mining techniques are used. New text mining algorithms are also developed to adjust thresholds during content aggregation and synthesis. Finally, the results visualization mechanism is presented which allow users to give a punctuation to the news stories. This mechanism represents a feedback punctuation for the system which will be considered into the global punctuation, which is the basis to show the results. This system can be useful to summarize all the information contained in the news stories which are stored in Internet, providing users a fast way to be informed.
Reference32 articles.
1. Business Information Systems
2. Mining Text Data
3. Almeida, I. (2023). Introduction to Large Language Models for business leaders: Responsible AI strategy beyond fear and hype. Now Next Later AI.
4. Amerland, D. (2013). Google Semantic Search: Search Engine Optimization (SEO) Techniques that get your company more traffic, increase brand impact, and amplify your online presence. Pearson Education.
5. Big Data