APPLICATION OF GILLESPIE ALGORITHM FOR SIMULATING EVOLUTION OF FITNESS OF MICROBIAL POPULATION
-
Published:2022-10-04
Issue:4
Volume:18
Page:5-15
-
ISSN:2353-6977
-
Container-title:Applied Computer Science
-
language:
-
Short-container-title:acs
Author:
GIL Jarosław,POLAŃSKI Andrzej
Abstract
In this study we present simulation system based on Gillespie algorithm for generating evolutionary events in the evolution scenario of microbial population. We present Gillespie simulation system adjusted to reproducing experimental data obtained in barcoding studies – experimental techniques in microbiology allowing tracing microbial populations with very high resolution. Gillespie simulation engine is constructed by defining its state vector and rules for its modifications. In order to efficiently simulate barcoded experiment by using Gillespie algorithm we provide modification - binning cells by lineages. Different bins define components of state in the Gillespie algorithm. The elaborated simulation model captures events in microbial population growth including death, division and mutations of cells. The obtained simulation results reflect population behavior, mutation wave and mutation distribution along generations. The elaborated methodology is confronted against literature data of experimental evolution of yeast tracking clones sub-generations. Simulation model was fitted to measurements in experimental data leading to good agreement.
Publisher
Politechnika Lubelska
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Computer Science Applications,Economics, Econometrics and Finance (miscellaneous),Mechanical Engineering,Biomedical Engineering,Information Systems,Control and Systems Engineering
Reference20 articles.
1. Baar, M., Coquille, L., Mayer, H., Hölzel, M., Rogava, M., Tüting, T., & Bovier, A. (2016). A stochastic model for immunotherapy of cancer. Scientific Reports, 6(1), 24169. https://doi.org/10.1038/srep24169 2. Beckman, R. A., & Loeb, L. A. (2005). Negative Clonal Selection in Tumor Evolution. Genetics, 171(4), 2123–2131. https://doi.org/10.1534/genetics.105.040840 3. Blundell, J. R., Schwartz, K., Francois, D., Fisher, D. S., Sherlock, G., & Levy, S. F. (2019). The dynamics of adaptive genetic diversity during the early stages of clonal evolution. Nature Ecology & Evolution, 3(2), 293–301. https://doi.org/10.1038/s41559-018-0758-1 4. Bozic, I., Antal, T., Ohtsuki, H., Carter, H., Kim, D., Chen, S., Karchin, R., Kinzler, K. W., Vogelstein, B., & Nowak, M. A. (2010). Accumulation of driver and passenger mutations during tumor progression. Proceedings of the National Academy of Sciences, 107(43), 18545–18550. https://doi.org/10.1073/pnas.1010978107 5. Bush, S. J., Foster, D., Eyre, D. W., Clark, E. L., De Maio, N., Shaw, L. P., Stoesser, N., Peto, T. E. A., Crook, D. W., & Walker, A. S. (2020). Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism–calling pipelines. GigaScience, 9(2), giaa007. https://doi.org/10.1093/gigascience/giaa007
|
|