EXAMINATION OF SUMMARIZED MEDICAL RECORDS FOR ICD CODE CLASSIFICATION VIA BERT
-
Published:2024-06-30
Issue:2
Volume:20
Page:60-74
-
ISSN:2353-6977
-
Container-title:Applied Computer Science
-
language:
-
Short-container-title:Appl. Comput. Sci.
Author:
AYDOGAN-KILIC DilekORCID, KILIC Deniz KenanORCID, NIELSEN Izabela EwaORCID
Abstract
The International Classification of Diseases (ICD) is utilized by member countries of the World Health Organization (WHO). It is a critical system to ensure worldwide standardization of diagnosis codes, which enables data comparison and analysis across various nations. The ICD system is essential in supporting payment systems, healthcare research, service planning, and quality and safety management. However, the sophisticated and intricate structure of the ICD system can sometimes cause issues such as longer examination times, increased training expenses, a greater need for human resources, problems with payment systems due to inaccurate coding, and unreliable data in health research. Additionally, machine learning models that use automated ICD systems face difficulties with lengthy medical notes. To tackle this challenge, the present study aims to utilize Medical Information Mart for Intensive Care (MIMIC-III) medical notes that have been summarized using the term frequency-inverse document frequency (TF-IDF) method. These notes are further analyzed using deep learning, specifically bidirectional encoder representations from transformers (BERT), to classify disease diagnoses based on ICD codes. Even though the proposed methodology using summarized data provides lower accuracy performance than state-of-the-art methods, the performance results obtained are promising in terms of continuing the study of extracting summary input and more important features, as it provides real-time ICD code classification and more explainable inputs.
Publisher
Politechnika Lubelska
Reference46 articles.
1. Alsentzer, E., Murphy, J. R., Boag, W., Weng, W. H., Jin, D., Naumann, T., & McDermott, M. (2019). Publicly available clinical BERT embeddings. arXiv preprint. https://doi.org/10.48550/arXiv.1904.03323 2. Baumel, T., Nassour-Kassis, J., Cohen, R., Elhadad, M., & Elhadad, N. (2018, June). Multi-label classification of patient notes: case study on ICD code assignment. In Workshops at the thirty-second AAAI conference on artificial intelligence. 3. Bhargava, P., Drozd, A., & Rogers, A. (2021). Generalization in NLI: Ways (not) to go beyond simple heuristics. arXiv preprint. https://doi.org/10.48550/arXiv.2110.01518 4. Cao, P., Chen, Y., Liu, K., Zhao, J., Liu, S., & Chong, W. (2020a, July). HyperCore: Hyperbolic and co-graph representation for automatic ICD coding. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 3105-3114. https://doi.org/10.18653/v1/2020.acl-main.282 5. Cao, P., Yan, C., Fu, X., Chen, Y., Liu, K., Zhao, J., Liu, S., & Chong, W. (2020b, July). Clinical-coder: Assigning interpretable ICD-10 codes to Chinese clinical notes. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 294-301. https://doi.org/10.18653/v1/2020.acl-demos.33
|
|