A DEEP LEARNING MODEL FOR ELECTRICITY DEMAND FORECASTING BASED ON A TROPICAL DATA

Author:

ADEWUYI Saheed A.,AINA Segun,OLUWARANTI Adeniran I.

Abstract

Electricity demand forecasting is a term used for prediction of users’ consumption on the grid ahead of actual demand. It is very important to all power stakeholders across levels. The power players employ electricity demand forecasting for sundry purposes. Moreover, the government’s policy on its market deregulation has greatly amplified its essence. Despite numerous studies on the subject using certain classical approaches, there exists an opportunity for exploration of more sophisticated methods such as the deep learning (DL) techniques. Successful researches about DL applications to com¬puter vision, speech recognition, and acoustic computing problems are motivation. However, such researches are not sufficiently exploited for electricity demand forecasting using DL methods. In this paper, we considered specific DL techniques (LSTM, CNN, and MLP) to short-term load fore¬casting problems, using tropical institutional data obtained from a Transmission Company. We also test how accurate are predictions across the techniques. Our results relatively revealed models appropriateness for the problem.

Publisher

Politechnika Lubelska

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Computer Science Applications,Economics, Econometrics and Finance (miscellaneous),Mechanical Engineering,Biomedical Engineering,Information Systems,Control and Systems Engineering

Reference29 articles.

1. Adewuyi, S., Aina, S., Uzunuigbe, M., Lawal, A., & Oluwaranti, A. (2019). An Overview of Deep Learning Techniques for Short-Term Electricity Load Forecasting. Applied Computer Science, 15(4), 75–92. https://doi.org/10.23743/acs-2019-31

2. Agrawal, R. K., Muchahary, F., & Tripathi, M. M. (2018). Long term load forecasting with hourly predictions based on long-short-term-memory networks. In 2018 IEEE Texas Power and Energy Conference (TPEC) (pp. 1–6). College Station, TX.

3. Bengio, Y. (2009). Learning deep architectures for AI. Foundation and Trends in Machine Learning, 2(1), 1–127.

4. Bouktif, S., Ali, F., Ali, O., & Mohamed, A. S. (2018). Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches. Energies, 11, 1636–1656.

5. Brownlee, J. (2018). Deep learning for time series forecasting: Predicting the future with MLPs, CNNs and LSTMs in Python. V1.2 ed. M. L. Mastery.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3