Abstract
Magnetoelectric multiferroics are solid-state materials which exhibit a coupling between ferroelectric and magnetic orders. This phenomenon is known as the magnetoelectric (ME) effect. Multiferroic materials possess a wide range of potential applications in such fields as metrology, electronics, energy harvesting & conversion, and medicine. Multiferroic research is facing two main challenges. Firstly, scientists are continuously trying to obtain a material with sufficiently strong, room-temperature ME coupling that would enable its commercial application. Secondly, the measurement techniques used in multiferroic research are often problematic to implement in a laboratory setting and fail to yield reproducible results. The aim of the present work is to discuss three most commonly used methods in multiferroic studies; the lock-in technique, the Sawyer-Tower (S-T) circuit and dielectric constant measurements. The paper opens with a general description of multiferroics which is followed by mathematical representation of the ME effect. The main body deals with the description of the aforementioned measurement techniques. The article closes with a conclusion and outlook for future research.
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference35 articles.
1. Bain A. K., Chand P.: Ferroelectrics: Principles and Applications. Wiley, 2017
2. Bonaedy T, Koo Y. S., Sung K. D., Jung J. H.: Resistive magnetodielectric property of polycrystalline γ-Fe2O3. Applied Physics Letters 91(13)/2007, 132901 [http://doi.org/10.1063/1.2790474].
3. Catalan G.: Magnetocapacitance without magnetoelectric coupling. Applied Physics Letters 88(10)/2006, 102902 [http://doi.org/10.1063/1.2177543].
4. Cheong S.-W., Mostovoy M.: Multiferroics: a magnetic twist for ferroelectricity. Nature Materials 6(1)/2007, 13–20 [http://doi.org/10.1038/nmat1804].
5. Das C., Shahee A., Lalla N., Shripathi T.: A simple and low cost Sawyer-Tower ferro-electric loop tracer with variable frequency and compensation circuit. Proceedings of the 54th DAE Solid State Physics Symposium, 2009, 439.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献