Abstract
The aim of this article was to determine the effect of principal component analysis on the results of classification of spongy tissue images. Four hundred computed tomography images of the spine (L1 vertebra) were used for the analyses. The images were from fifty healthy patients and fifty patients diagnosed with osteoporosis. The obtained tissue image samples with a size of 50x50 pixels were subjected to texture analysis. As a result, feature descriptors based on a grey level histogram, gradient matrix, RL matrix, event matrix, autoregressive model and wavelet transform were obtained. The results obtained were ranked in importance from the most important to the least important. The first fifty features from the ranking were used for further experiments. The data were subjected to the principal component analysis, which resulted in a set of six new features. Subsequently, both sets (50 and 6 traits) were classified using five different methods: naive Bayesian classifier, multilayer perceptrons, Hoeffding Tree, 1-Nearest Neighbour and Random Forest. The best results were obtained for data on which principal components analysis was performed and classified using 1-Nearest Neighbour. Such an algorithm of procedure allowed to obtain a high value of TPR and PPV parameters, equal to 97.5%. In the case of other classifiers, the use of principal component analysis worsened the results by an average of 2%.
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference14 articles.
1. Armi L., Fekri-Ershad S.: Texture image analysis and texture classification methods – a review. International Online Journal of Image Processing and Pattern Recognition 2/2019, 1–29.
2. Bharati M. H., Liu J. J., MacGregor J. F.: Image texture analysis: methods and comparisons. Chemometrics and Intelligent Laboratory Systems 72/ 2004, 57–71, [http://doi.org/10.1016/j.chemolab.2004.02.005].
3. Bishop C. M.: Pattern Recognition and Machine Learning. Springer, New York, 2006.
4. Haralick R. M.: Statistical and structural approaches to texture. Proceedings of the IEEE 67/1979, 786–804, [http://doi.org/10.1109/PROC.1979.11328].
5. Haralick R. M., Shanmugam K., Dinstein I.: Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics SMC-3, 1973, 610–621, [http://doi.org/10.1109/TSMC.1973.4309314].