FEATURES OF THE ANGULAR SPEED DYNAMIC MEASUREMENTS WITH THE USE OF AN ENCODER

Author:

Kukharchuk VasylORCID,Wójcik WaldemarORCID,Pavlov SergiiORCID,Katsyv SamoilORCID,Holodiuk VolodymyrORCID,Reyda OleksandrORCID,Kozbakova AinurORCID,Borankulova GaukharORCID

Abstract

Based on the most significant features of the angular velocity dynamic measurements selected by the authors, the main phases of measuring information transformation were established, which allowed to obtain new mathematical models in the form of transformation function, equations for estimating quantization errors, analytical dependences for measuring range that are initial for modeling physical processes occurring in such digital measuring channels with microprocessor control. The process of converting an analog quantity into a binary code is analytically described, an equation for estimating the absolute and relative quantization error is obtained and a measurement range is established, which provides a normalized value of relative quantization error for angular velocity measuring channels with encoder. For the first time, the equation of sampling error was obtained, and it was proved that the limiting factor of the angular velocity measurements upper limit is not only the normalized value of quantization error, as previously thought, but also the value of sampling frequency fD. Therefore, to expand the measurement range (by increasing the upper limit of measurement), it is proposed not only to increase the speed of analog-to-digital conversion hardware, but also to reduce the execution time of software drivers for transmitting measurement information to RAM of microprocessor system. For this purpose, the analytical dependences of estimating the upper limit of measurement based on the value of the sampling step for different modes of measurement information transmission are obtained. The practical implementation of the software mode measurement information transmission is characterized by a minimum of hardware costs and maximum execution time of the software driver, which explains its low speed, and therefore provides a minimum value of the upper limit measurement. In the interrupt mode, the upper limit value of the angular velocity measurement is higher than in the program mode due to the reduction of the software driver’s execution time (tFl = 0). The maximum value of the angular velocity measurements upper limit can be achieved using the measurement information transmission in the mode of direct access to memory (DMA) by providing maximum speed in this mode (tFl = 0, tDR = 0). In addition, the application of the results obtained in the work allows at the design stage (during physical and mathematical modeling) to assess the basic metrological characteristics of the measuring channel, aimed at reducing the development time and debugging of hardware, software, and standardization of their metrological characteristics.

Publisher

Politechnika Lubelska

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Photon technologies to increase reproduction and resistance of varieties in agriculture;Optical Fibers and Their Applications 2023;2023-12-20

2. OPTIMIZATION OF PARTS CUTTING PROCESS PARAMETERS WORKING IN CONDITIONS OF CYCLIC LOADS;Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska;2023-09-30

3. TONTOR ZONES MODEL FOR AUTOMATIVE OBJECT MONITORING;Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska;2023-06-30

4. AUTOMATED DEFINITION OF THE DISCRETE ELEMENTS INTERACTIONS IN WORKSPACE OF EQUIPMENT;Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska;2023-06-30

5. Increasing Technical Efficiency of Renewable Energy Sources in Power Systems;Energies;2023-03-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3