COMPARISON OF THE EFFECTIVENESS OF TIME SERIES ANALYSIS METHODS: SMA, WMA, EMA, EWMA, AND KALMAN FILTER FOR DATA ANALYSIS

Author:

Lotysh VolodymyrORCID,Gumeniuk LarysaORCID,Humeniuk PavloORCID

Abstract

In time series analysis, signal processing, and financial analysis, simple moving average (SMA), weighted moving average (WMA), exponential moving average (EMA), exponential weighted moving average (EWMA), and Kalman filter are widely used methods. Each method has its own strengths and weaknesses, and the choice of method depends on the specific application and data characteristics. It is important for researchers and practitioners to understand the properties and limitations of these methods in order to make informed decisions when analyzing time series data. This study investigates the effectiveness of time series analysis methods using data modeled with a known exponential function with overlaid random noise. This approach allows for control of the underlying trend in the data while introducing the variability characteristic of real-world data. The relationships were written using scripts for the construction of dependencies, and graphical interpretation of the results is provided.

Publisher

Politechnika Lubelska

Subject

Electrical and Electronic Engineering,Control and Systems Engineering

Reference7 articles.

1. Brockwell P. J., Davis R. A.: Introduction to time series and forecasting. Springer, 2016.

2. Gardner E. S.: Exponential smoothing: The state of the art. Journal of forecasting 4(1), 1985, 1–28.

3. Hyndman R. J., Athanasopoulos G.: Forecasting: principles and practice. Otexts, 2018.

4. Lewis C. D.: Industrial and business forecasting methods. Butterworth, Kent 1982.

5. Ruppert D., Wand M. P., Carroll R. J.: Semiparametric regression. Cambridge University Press, 2018.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3