PREDICTION MODEL OF PUBLIC HOUSES’ HEATING SYSTEMS: A COMPARISON OF SUPPORT VECTOR MACHINE METHOD AND RANDOM FOREST METHOD

Author:

Perekrest AndriiORCID,Chenchevoi VladimirORCID,Chencheva OlgaORCID,Kovalenko AlexandrORCID,Kushch-Zhyrko MykhailoORCID,Kalizhanova AliyaORCID,Amirgaliyev YedilkhanORCID

Abstract

Data analysis and predicting play an important role in managing heat-supplying systems. Applying the models of predicting the systems’ parameters is possible for qualitative management, accepting appropriate decisions relating control that will be aimed at increasing energy efficiency and decreasing the amount of the consumed power source, diagnosing and defining non-typical processes in the functioning of the systems. The article deals with comparing two methods of ma-chine learning: random forest (RF) and support vector machine (SVM) for predicting the temperature of the heat-carrying agent in the heating system based on the data of electronic weather-dependent controller. The authors use the following parameters to compare the models: accuracy, source cost and the opportunity to interpret the results and non-obvious interrelations. The time spent for defining the optimal hyperparameters and conducting the SVM model training is deter-mined to exceed significantly the data of the RF parameter despite the close meanings of the root mean square error (RMSE). The change from 15-min data to once-a-minute ones is done to improve the RF model accuracy. RMSE of the RF model on the test data equals 0.41°С. The article studies the importance of the contribution of variables to the prediction accuracy.

Publisher

Politechnika Lubelska

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent Hybrid Heat Management System: Overcoming Challenges and Improving Efficiency;2024 IEEE International Systems Conference (SysCon);2024-04-15

2. Heating Station Automated Control System Based on a Small-Scale Model of a Laboratory Stand;2023 IEEE 5th International Conference on Modern Electrical and Energy System (MEES);2023-09-27

3. Intelligent Technologies for Ecomonitoring Data Processing in Conditions of Technogenic Emergencies;2022 IEEE 4th International Conference on Modern Electrical and Energy System (MEES);2022-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3