Abstract
This article introduces an enhanced energy management strategy that employs the state of charge (SoC) of batteries in standalone DC microgrids with photovoltaic (PV) modules. Efficient energy management is crucial to ensure uninterrupted power supply to the load units in microgrids. To address the challenges posed by external factors such as temperature fluctuations and variations in solar irradiance, energy storage systems are deployed to compensate for the negative effects of the external factors on the output power of PV modules. The proposed approach takes into account various parameters of the microgrid elements, including the available power from the sources, demand power, and the SoC of batteries, in order to develop an efficient energy control mechanism with load-shedding capability. By considering these parameters, the strategy aims to optimize the utilization of available resources while ensuring a reliable power supply to the connected loads. The SoC of the batteries plays a critical role in determining optimal charging and discharging profiles, enabling effective energy management within the microgrid. To evaluate the effectiveness of the proposed approach, an algorithm is designed and simulations are conducted. The proposed algorithm utilizes a hybrid approach by combining power and SoC-based methods for efficient control. Through analysis of the simulation results, it is found that the presented approach is capable of delivering the intended load power while increasing the life cycle of the batteries with the pre-defined SoC levels.
Subject
Electrical and Electronic Engineering,Control and Systems Engineering