CONVOLUTIONAL NEURAL NETWORKS FOR EARLY COMPUTER DIAGNOSIS OF CHILD DYSPLASIA

Author:

Bilynsky YosypORCID,Nikolskyy AleksandrORCID,Revenok ViktorORCID,Pogorilyi VasylORCID,Smailova SauleORCID,Voloshina OksanaORCID,Kumargazhanova SauleORCID

Abstract

The problem in ultrasound diagnostics hip dysplasiais the lack of experience of the doctor in case of incorrect orientation of the hip joint andultrasound head. The aim of this study was to evaluate the ability of the convolutional neural network (CNN) to classifyand recognize ultrasound imagingof thehip joint obtained at the correct and incorrect position of the ultrasound sensor head in the computer diagnosisofpediatricdysplasia. CNN's suchas GoogleNet, SqueezeNet, and AlexNet were selected for the study. The most optimal for the task is the useof CNN GoogleNet showed. In this CNN usedtransfer learning. At the same time, fine-tuning of the network and additional training on the databaseof 97 standards of ultrasonic images of the hip jointwere applied. Image type RGB 32 bit, 210 × 300 pixels are used. Fine-tuning has been performedthe lower layers of the structure CNN, in which 5 classesare allocated, respectively 4 classes of hip dysplasia types according to the Graf, and the Type ERROR ultrasound image, where position of the ultrasoundsensor head and of the hip joint in ultrasound diagnostics are incorrect orientation.It was found that the authenticity of training and testing is the highestfor the GoogleNet network:when classified in the training group accuracy is up to 100%, when classified in the test group accuracy–84.5%

Publisher

Politechnika Lubelska

Subject

Electrical and Electronic Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultrasound Brain Tomography: Comparison of Deep Learning and Deterministic Methods;IEEE Transactions on Instrumentation and Measurement;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3