DEVELOPMENT OF AN APPLICATION FOR THE THERMAL PROCESSING OF OIL SLIME IN THE INDUSTRIAL OIL AND GAS SECTOR

Author:

Balakayeva GulnarORCID,Kalmenova GaukharORCID,Darkenbayev DaurenORCID,Phillips ChristoferORCID

Abstract

The production activities of oil refineries and oil and gas-producing enterprises inevitably have an anthropogenic impact on the environment, so environmental issues and the rational use of natural resources are important. The most dangerous pollutants of all components in the natural environment are oil waste, and one of the most effective methods of processing is heat treatment. The task was set to neutralize oil waste by thermal processing of oil slime to an environmentally safe level. The studies are carried out by methods of mathematical and numerical simulation of thermal processing, the results of which describe changes in temperature and mass of the stream over time. Extensive calculations with varying current operating and other parameters allow us to optimize the flow of heat and mass transfer during the thermal processing of oil slime. Numerical modeling is implemented using the method of alternating directions in an implicit iterative scheme until a convergence condition is met. The purpose of this work is to create an application for solving research and practical problems of oil waste processing. The application used allows the solution of the problems of oil slime processing. With the help of color-animated illustrations and a graphical interface, it supports the visualization of the results obtained, and provides the possibility of interactive interaction with the user, while providing instant control of the results obtained for timely decision-making to prevent environmental pollution in the industrial oil gas sector.

Publisher

Politechnika Lubelska

Subject

Electrical and Electronic Engineering,Control and Systems Engineering

Reference28 articles.

1. Abdrabboh M. A.: Studies in Heat and Mass Transfer in Oil Sand Beds. Ph.D. thesis. University of Calgary, Calgary, Alberta, Canada,1983.

2. Abimbola A., Bright S.: Alternating-Direction Implicit Finite-Difference Method for Transient 2D Heat Transfer in a Metal Bar using Finite Difference Method. International Journal of Scientific & Engineering Research 6(6), 2015.

3. Altybay A. et al.: Software Application for the Investigation of the Wave Propagation in 1d and 2d Wave Equations with Singular Coefficients. Telematique 21(1), 2022, 7468–7474.

4. Anderson D. A. et al.: Computational Fluid Mechanics and Heat Transfer. 2nd ed., Taylor & Francis, 1977.

5. Badrul I.: Petroleum sludge, its treatment and disposal: a review. Int. J. Chem. Sci. 13(4), 2015, 1584–1602.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DEVELOPMENT OF A SOFTWARE SYSTEM FOR PREDICTING EMPLOYEE RATINGS;Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska;2023-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3