SELF-OSCILLATING PARAMETRIC HUMIDITY SENSOR WITH FREQUENCY OUTPUT SIGNAL

Author:

Osadchuk IaroslavORCID,Osadchuk AlexanderORCID,Osadchuk VladimirORCID,Krylik LyudmilaORCID

Abstract

A self-oscillating parametric humidity sensor has been developed that implements the principle of "humidity-frequency" conversion into hybrid integrated circuit based on a microelectronic transistor structure with a negative differential resistance, in which the humidity-sensitive element is a resistor of the HR202 type. For the purposes of determining parameters self-oscillating parametric humidity sensor with frequency output a mathematical model has been developed that takes into account the effect of humidity on a sensitive resistive element, which is an integral element of the device. Based on the mathematical model, analytical expressions for the transformation function and the sensitivity equation are obtained. It is shown that the main contribution to the conversion function is made by relative humidity. The computer simulation and experimental studies of a self-oscillating parametric humidity sensor with a frequency output signal contributed to obtaining the main parameters and characteristics, such as the dependence of the generation frequency on changes in relative humidity in the range from 30% to 99%, the change in sensitivity on relative humidity, the dependence of the active and reactive components of the impedance in the frequency range from 50 kHz to 2 GHz; standing wave ratio, change in logarithmic magnitude and spectra of the output signal of a parametric humidity sensor with a frequency output signal in the LTE-800 Downlink frequency range. The obtained electrical characteristics confirm the operability of the developed device. The sensitivity of the developed self-oscillating parametric humidity sensor in the range of relative humidity change from 30% to 99% has a value from 332.8 kHz/% to 130.2 kHz/%.

Publisher

Politechnika Lubelska

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference25 articles.

1. Assaf T.: A Frequency Modulation-Based Taxel Array: A Bio-Inspired Architecture for Large-Scale Artificial Skin. Sensors 21, 2021, 1−17.

2. di Benedetto M.-G. et al.: Analysis of NB-IoT technology towards massive Machine Type Communication. University Sapienza di Roma, Roma 2018.

3. Brown P.: Sensors and actuators: technology and applications. Library Press, New York 2017.

4. Bury O. A. et al.: Gas sensors on nanostructures: current state and research prospects. Bulletin of the National University "Lviv Polytechnic", Series: Radioelectronics and telecommunications 885, 2017, 113–131.

5. Czubenko M. et al.: Simple Neural Network for Collision Detection of Collaborative Robots. Sensors 21, 2021, 4235.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3