ПОРІВНЯЛЬНА ЕФЕКТИВНІСТЬ КЛАСИФІКАТОРІВ ЗОБРАЖЕНЬ ПІД ЧАС РОЗПІЗНАВАННЯ ЗОН ІНТЕРЕСУ ПРИ ЛАПАРОСКОПІЧНИХ ВТРУЧАННЯХ

Author:

Баязітов М. Р.,Баязітов Д. М.,Бузиновський А. Б.,Ляшенко А. В.,Новіков Д. В.,Годлевський Л. С.

Abstract

У роботі представлено порівняльне оцінювання ефективності систем автоматизованої комп'ютерної діагностики, розроблених на основі двох класифікаторів — каскаду дескрипторів Хаара та AdaBoost, під час лапароскопічної діагностики апендициту та метастазів печінки. Для навчання використовували зображення, а також гама-кореговані та конвертовані у HSV шкалу кольори RGB зображення, отримані під час лапароскопічної діагностики. Дескриптори, що використовували для навчання класифікатора AdaBoost отримували за допомогою методу локального бінарного патерну, який включав інформаційні показники кольору, а також показники текстури. Після завершення навчання проводили тест оцінювання ефективності діагностики при якому використовували зображення, що не застосовували для навчання. Найбільш високим показник повноти (recall) був при тестовій діагностиці апендициту за допомогою навчання класифікатора AdaBoost дескрипторами модифікованого кольору локального бінарного патерну, отриманими з RGB зображень, — 0,745, а під час діагностики метастазів печінки — 0,902. Також коректність діагностики (accuracy) склала 74,4 % під час діагностики апендициту та 89,3 % при діагностиці метастазів печінки. Коректність діагностики із застосуванням класифікатора Хаара була найбільш високою за умови діагностики метастазів печінки та склала 0,672 при використанні RGB зображень, 0,723 — при навчанні HSV зображеннями. Діагностика із застосуванням класифікатора Хаара є менш ефективною порівняно з діагностикою, що здійснювалась із застосуванням класифікатора AdaBoost, навчання якого здійснювали із застосуванням дескрипторів модифікованого кольору локального бінарного патерну.

Publisher

Ternopil State Medical University

Subject

General Medicine

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3