Improving the effectiveness of project scheduling by using Earned Value Management and Artificial Neural Network

Author:

Jojok ORCID,Anik ORCID,Syamsul ORCID,Della ORCID,Kristya ORCID

Abstract

During construction, uncontrolled resources impact project performance. Earned Value Management (EVM) is a widespread method used for project management based on time and cost control. Advances in Information Technology (IT) provide options to improve the EVM method. The EVM is a project-level method that excludes detailing the behavior of project parameters at the level of construction operations, they are handled in aggregated economic terms over time. Thus, this work studies the improvement of EVM using IT to express the handling of operational variables. This article uses a road construction project as a case study, to evaluate three approaches (i.e., Bayesian Network (BN), Artificial Neural Network (ANN), and Hybrid EVM-ANN) as improvement options for the EVM method. It was found that the ANN provides the best improvement of EVM results. The use of ANN and project parameters improves the handling of EVM. By mayor forecast effectiveness, is expected to improve the quality and availability of data for decision making, a condition which in turn may improve agility and adaptability of the project as-built outcomes. The model EVM-ANN uses parameters that influence project implementation completion, making it easier to assess project time performance based on various conditions in the field so that the project can obtain the best strategy to ensure project completion on time.

Publisher

Pontificia Universidad Catolica de Chile

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3