Seismic analysis of RC building frames with vertical mass and stiffness irregularities using adaptive pushover analysis

Author:

Benaied Brahim,Hemsas Miloud,Benanane Abdelkader,Hentri Mohammed

Abstract

Irregular multistory buildings constitute a large part of modern urban infrastructure due to architectural aesthetics and functional requirements. In contrast, their behavior during recent major earthquakes indicated that severe structural damage was observed due to non-uniform distributions of mass, stiffness and strength either in plan or in elevation. Notably, abrupt changes in these quantities between adjacent stories are always associated with changes in the structural system along the height of the building. The present study investigates the inelastic response of RC buildings with mass and stiffness irregularities subjected to earthquake action. Thus, the displacement-based adaptive pushover method is used. This latter is motivated by the application of a lateral displacement pattern obtained by combining different mode shapes and updated incrementally at each analysis step. For this purpose, a ten-story regular frame structure is chosen and modified by incorporating vertical irregularities in various forms in order to estimate and quantify essential parameters' responses. The results obtained are discussed under the following headings: base shear forces, roof displacement, inter-story drift and story-shear distribution. With respect to the vertical mass and stiffness irregularities, it was noticed that the seismic response is more significantly influenced by stiffness irregularities compared to mass irregularities, which were found to have a slight impact on the seismic behavior of the building. It is also established that the simple procedure allows the evaluation of design forces and displacements in a more rational manner, in accordance with the current state of knowledge and modern trends in building codes. The results conclude, however, that the irregular structure cannot meet the seismic design requirements and must be constructed to minimize seismic effects.

Publisher

Pontificia Universidad Catolica de Chile

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3