Radar Cross Section Reduction and Shape Optimization using Adjoint Method and Automatic Differentiation

Author:

Li Ming,Bai Junqiang,Qu Feng

Abstract

An efficient Radar Cross Section (RCS) gradient evaluation method based on the adjoint method is presented. The Method of Moments is employed to solve the Combined Field Integral Equation (CFIE) and the corresponding derivatives computing routines are generated by the program transformation Automatic Differentiation (AD) technique. The differential code is developed using three kinds of AD mode: tangent mode, multidirectional tangent mode, and adjoint mode. The differential code in adjoint mode is modified and optimized by changing the “two-sweeps” architecture into the “inner-loop two-sweeps” architecture. Their efficiency and memory consumption are tested and the differential code using modified adjoint mode demonstrates the great advantages in both efficiency and memory consumption. A gradient-based shape optimization design method is established using the adjoint method and the mechanism of RCS reduction is studied. The results show that the sharp leading can avoid the specular back-scattering and the undulations of the surface could change the phases which result in a further RCS reduction.

Publisher

River Publishers

Subject

Electrical and Electronic Engineering,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3