Noise Analysis Method of Radiated EMI based on Non-linear Principal Component Analysis

Author:

Zhu Zhibo,Yan Wei,Wang Yongan,Zhao Yang,Zhang Tao,Huang Junshuo

Abstract

Aiming at the radiated electromagnetic interference (EMI) noise of electronic equipment, a novel method of radiated EMI noise analysis based on non-linear principal component analysis (NLPCA) algorithm is proposed in this paper. In order to obtain multiple independent common-mode / differential-mode radiated sources, and to find the sources that cause the radiated noises that exceed the limit of standard, NLPCA algorithm is used to process the near-field radiated signals superimposed by multiple radiated sources. The simulation results show that NLPCA can successfully screen out the radiated EMI noises which exceed the limit of standard. Moreover, the experiments are carried out with three models: double-common-mode hybrid sources, double-differential-mode hybrid sources and common-differential-mode hybrid sources. Compared with the traditional independent component algorithm (ICA), the method proposed in this paper can separate the radiated EMI noise sources more accurately and quickly. It can be concluded that the accuracy of NLPCA algorithm is 10% higher than ICA algorithm. This work will contribute to trace the radiated EMI noise sources, and to provide the theoretical basis for the future suppression.

Funder

National Natural Science Foundation of China

Publisher

River Publishers

Subject

Electrical and Electronic Engineering,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single-band Series Absorptive Common-mode Noise Filter;The Applied Computational Electromagnetics Society Journal (ACES);2023-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3