Author:
Zhang Tianliang,Tian Yubo,Chen Xuezhi,Gao Jing
Abstract
The design of electromagnetic components generally relies on simulation of full-wave
electromagnetic field software exploiting global optimization methods. The main problem of the method is time consuming. Aiming at solving the problem, this study proposes a regression surrogate model based on AdaBoost Gaussian process (GP) ensemble (AGPE). In this method, the GP is used as the weak model, and the AdaBoost algorithm is introduced as the ensemble framework to integrate the weak models, and the strong learner will eventually be used as a surrogate model. Numerical simulation experiment is used to verify the effectiveness of the model, the mean relative error (MRE)
of the three classical benchmark functions decreases, respectively, from 0.0585, 0.0528, 0.0241 to 0.0143, 0.0265, 0.0116, and then the method is used to model the resonance frequency of rectangular microstrip antenna (MSA) and coplanar waveguide butterfly MSA. The MRE of test samples based on the APGE are 0.0069, 0.0008 respectively, and the MRE of a single GP are 0.0191, 0.0023 respectively. The results show that, compared with a single GP regression model, the proposed AGPE method works better. In addition, in the modeling experiment of resonant frequency of rectangular MSA, the results obtained by AGPE are compared with those obtained by using neural network (NN). The results show that the proposed method is more effective.
Funder
National Natural Science Foundation of China
Qinglan Project of Jiangsu Province of China
Subject
Electrical and Electronic Engineering,Astronomy and Astrophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献