GRAPHENE OXIDE AND REDUCED GRAPHENE OXIDE

Author:

Oliveira Pâmella Schramm,Rossato Aline,Silva Silveira Larissa da,Ledur Cristian Mafra,Sousa Filho Walter Paixão de,Kaufmann Junior Claudir Gabriel,Mortari Sergio Roberto,Vianna Santos Roberto Christ,Kurtz Guilherme Chagas,Sagrillo MicheleORCID,Dos Santos Cláudia Lange

Abstract

To present a possible new alternative for wound treatment, this work evaluated the biological safety and therapeutic efficacy of graphene oxide (GO) and reduced graphene oxide (rGO) nanoparticles (NPs). First, the nanostructures were studied in silico and showed to be able to inhibit the production of some pro-inflammatory cytokines and stimulate the production of the anti-inflammatory cytokine IL-10, especially rGO. The results of the morphological and structural characterization of GO NPs synthesized from the Hummers method and reduced by ascorbic acid, were consistent with the literature, confirming their achievement. In the broth microdilution assay, GO and rGO showed antimicrobial activity against the clinical isolate of Streptococcus agalactiae (S. agalactiae) at a minimum inhibitory concentration (MIC) of 625 µg/mL for GO and 312.5 µg/mL for rGO. In addition, the nanostructure of rGO was able to inhibit, in subinhibitory concentration, the formation of S. agalactiae biofilm by up to 77% when compared to the positive control. Both NPs, in all tested concentrations, did not cause hemolysis, and alterations in coagulation in vitro assays. However, in the safety tests, it was evidenced that only the MIC of 312, µg/mL for rGO was biologically safe and presented anti-inflammatory and healing behavior in vitro. In general, the present work confirmed rGO's potential in the treatment of chronic wounds, since in silico showed anti-inflammatory behavior and in vitro showed therapeutic efficacy at low concentrations, prevented biofilm formation, and showed no significant toxic effects.

Publisher

International Journal for Innovation Education and Research

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3