ARTIFICIAL NEURAL NETWORKS FOR PREDICTING THE GENERATION OF ACETALDEHYDE IN PET RESIN IN THE PROCESS OF INJECTION OF PLASTIC PACKAGES

Author:

Nascimento Mauro Reis,Alencar David Barbosa de,Nascimento Manoel Henrique Reis,Monteiro Carlos Alberto

Abstract

The industrial production of preforms for the manufacture of PET bottles, during the plastic injection process, is essential to regulate the drying temperature of the PET resin, to control the generation of Acetaldehyde (ACH), which alters the flavor of carbonated or non-carbonated drinks, giving the drink a citrus flavor and putting in doubt the quality of packaged products. In this work, an Artificial Neural Network (ANN) of the Backpropagation type (Cascadeforwardnet) is specified to support the decision-making process in controlling the ideal drying temperature of the PET resin, allowing specialists to make the necessary temperature regulation decisions  for the best performance by decreasing ACH levels. The materials and methods were applied according to the manufacturer's characteristics on the moisture in the PET resin grain, which may contain between 50 ppm and 100 ppm of ACH. Data were collected for the method analysis, according to temperatures and residence times used in the blow injection process in the manufacture of the bottle preform, the generation of ACH from the PET bottle after solid post-condensation stage reached residual ACH levels below (3-4) ppm, according to the desired specification, reaching levels below 1 ppm. The results found through the Computational Intelligence (IC) techniques applied by the ANNs, where they allowed the prediction of the ACH levels generated in the plastic injection process of the bottle packaging preform, allowing an effective management of the parameters of production, assisting in strategic decision making regarding the use of temperature control during the drying process of PET resin.

Publisher

International Journal for Innovation Education and Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3