SAFETY PROFILE AND PREVENTION OF COGNITIVE DEFICIT IN ALZHEIMER’S DISEASE MODEL OF GRAPHENE FAMILY NANOMATERIALS, TUCUMA OIL (Astrocaryum vulgare) AND ITS SYNERGISMS

Author:

Ferreira Schopf PatriciaORCID,Peglow Pinz MikaelaORCID,Pereira da Motta Ketlyn,Klein Vitor PereiraORCID,Kolinski Machado AlencarORCID,Rhoden Cristiano Rodrigo BohnORCID,Wilhelm Ethel AntunesORCID,Luchese Cristiane,Zanella IvanaORCID,Sagrillo MicheleORCID

Abstract

Alzheimer's disease is a worldwide health issue, and there are currently no treatments that can stop this disease. Oxidized graphene derivatives have gained prominence in use in biological systems due to their excellent physical-chemical characteristics, biocompatibility and ability to overcome the blood-brain barrier. Other substances highlighted are those of natural origin from the Amazon biome, such as tucuma, a fruit whose oil has been widely studied in therapeutic applications. Thus, the aim of this study was to investigate the action of graphene oxide, reduced graphene oxide and tucuma oil, isolated and combined, as an alternative for treatment of Alzheimer's disease through studies in silico, in vitro, in vivo and ex vivo. Computational simulation via docking was used to verify the affinity of the substances with the proteins β-amyloid and acetylcholinesterase, in which the reduced graphene oxide was the one that showed the most favorable interaction. The results of the ab initio simulation showed that the synergism between the nanostructures and the oil occurs through physical adsorption. The experimental results revealed that the substances and their combinations were nontoxic, both at the cellular and systemic level. In general, all treatments had positive results against induced memory deficit, but reduced graphene oxide was the most prominent, as it was able to protect against memory damage in all behavioral tests performed, with anticholinesterase activity and antioxidant effect. In conclusion, the reduced graphene oxide is, among the treatments studied, the one with great therapeutic potential to be investigated in the treatment of this disease.

Publisher

International Journal for Innovation Education and Research

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3