PREDICTION OF THE DEVELOPMENT OF PERIODONTAL DISEASE

Author:

Vadzyuk StepanORCID, ,Boliuk YulianaORCID,Luchynskyi MykhailoORCID,Papinko IhorORCID,Vadzyuk NazarORCID, , , ,

Abstract

Introduction. Periodontal tissue disease is one of the most common dental pathologies, which among young people occurs with a frequency of 60% to 99%. Therefore, the problem of finding new links in the pathogenesis, the reasons for the growing prevalence of periodontal disease, as well as effective methods for its early diagnosis and prevention, is relevant. Objectives. Establish the possibility of using individual stomatological and psychophysiological features to predict the development of periodontal disease. Materials and methods. 156 students aged 18-23 years old without systemic diseases were surveyed for some features of oral hygiene and nutrition. Also the study subjects underwent a dental examination, psychological testing and the assessment of individual typological features of higher nervous activity and autonomous regulation. The model for statistical prediction were designed using neural networks. Results. Two neural networks were designed with the best predictors among dental history and examination, psychological testing, parameters of higher nervous activity and heart rate variability analysis. The diagnostic sensitivity of the first prognostic model was 83.33 % and the specificity was 92.31 %. The second model was characterized by 90.00 % sensitivity and 78.57 % specificity. Conclusion. The method of modeling using neural networks based on the index assessment of the condition of teeth hard tissues, the level of oral hygiene and the evaluation of psychophysiological features can effectively predict the risk of periodontal disease development in young people

Publisher

Danylo Halytskyi Lviv National Medical University

Subject

Molecular Medicine

Reference34 articles.

1. How to use statistical models and methods for clinical prediction;Cortese;Ann Transl Med,2020

2. 2. Lisetska IS, Rozhko MM, Kutsyk RV. Klinichnyi stan ta osoblyvosti mikrobiotsenozu tkanyn parodonta u pidlitkiv iz kataralnym hinhivitom ta khronichnym hastroduodenitom. Sovremennaia pedyatryia. 2018;5(93):20-5. [Ukrainian]

3. 3. Kiosieva OV. Tiutorskyi psykhoosvitnii suprovid yak faktor preventsii porushen adaptatsii u studentiv. Visnyk sotsialnoi hihiieny ta orhanizatsii okhorony zdorovia Ukrainy. 2016;(8(68)):46-51. [Ukrainian]

4. 4. Kiosieva OV. Osoblyvosti psykhoemotsiinoi kharakterystyky studentiv molodshykh kursiv iz rozladamy adaptatsii. Visnyk sotsialnoi hihiieny ta orhanizatsii okhorony zdorovia Ukrainy. 2016;(1(67)):30-5. [Ukrainian]

5. Repeatedly measured predictors: a comparison of methods for prediction modeling;Welten;Diagnostic Progn Res,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DYNAMIC CHANGES IN PARACLINICAL INDICES FOLLOWING THE COMPLETION OF TREATMENT FOR GENERALIZED PERIODONTITIS IN PATIENTS WITH METABOLIC SYNDROME;Актуальні проблеми сучасної медицини: Вісник Української медичної стоматологічної академії;2023-05-23

2. State of Non-Specific Resistance of the Oral Cavity in Workers of Industrial Productions with Harmful Factors;Ukraïnsʹkij žurnal medicini, bìologìï ta sportu;2022-08-30

3. Evaluation of the Progression of Periodontitis with the Use of Neural Networks;Journal of Clinical Medicine;2022-08-10

4. Artificial Intelligence in Dentistry—Narrative Review;International Journal of Environmental Research and Public Health;2022-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3