Type-B Energetic Processes and Their Associated Scientific Implications

Author:

Lee James Weifu

Abstract

Recently, our work has identified two thermodynamically distinct types (A and B) of energetic processes naturally occurring on Earth: Type-A energy processes such as the classical heat engines, ATP hydrolysis, and many of the known chemical, electrical, and mechanical processes apparently well follow the second law of thermodynamics; and Type-B energy processes, such as the newly discovered thermotrophic function that isothermally utilizes environmental heat energy to do useful work in driving ATP synthesis, which follows the first law of thermodynamics (conservation of mass and energy), but does not necessarily have to be constrained by the second law, owing to their special asymmetric functions. In mitochondria, their special asymmetric functions associated with Type-B processes comprise: 1) The transmembrane asymmetry of inner mitochondrial membrane structure with the protonic outlets of redox-driven proton-pumping protein complexes protruded away from the membrane surface by about 1-3 nm into the bulk liquid p-phase while the protonic inlet of the F0F1-ATP synthase located rightly at the transmembrane electrostatically localized proton (TELP) layer; and 2) The lateral asymmetry of mitochondrial cristae with an ellipsoidal shape that enhances the density of TELP at the cristae tips where the F0F1-ATP synthase enzymes are located in supporting the TELP-associated thermotrophic function. The identification of Type-B energy processes indicates that there is an entirely new world of physical and energy sciences yet to be fully uncovered. Innovative efforts on Type-B processes to enable isothermally utilizing endless environmental heat energy could help to liberate all peoples from their dependence of fossil fuel energy, thus helping to reduce greenhouse gas CO2 emissions and control climate change toward a sustainable future for the humanity on Earth.

Publisher

Society for Scientific Exploration

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3