Self-reported occupational exposure and its association with sperm DNA fragmentation in infertile men

Author:

Caliskan ZeynepORCID,Kucukgergin CananORCID,Aktan GulsanORCID,Bulut NurgulORCID,Ozdemirler GulORCID

Abstract

Background/Aim: Sperm quality has experienced a decline in recent years, with this issue being particularly pronounced in industrialized nations, suggesting a potential link to occupational exposures. Evaluating sperm DNA fragmentation can yield valuable insights into male fertility, although its association with occupational exposures remains less well-established. Our study aimed to investigate the relationship between self-reported occupational exposures and sperm DNA fragmentation in infertile men. Methods: This retrospective cohort study involved 391 infertile men who sought fertility treatment at a university clinic between 2017 and 2020. A brief questionnaire was administered to collect data on patients’ demographic characteristics, medical history, occupation, and exposure types. In this comparative study, patients were categorized into two groups based on their occupational exposures (the unexposed and exposed groups). The exposed group was further sub-grouped according to their specific exposure types, which included cement, solvents, metals, pesticides, mechanical vibration, and heat. The primary outcome in this study was assessed using the terminal deoxynucleotidyl transferase-mediated nick end-labeling test (TUNEL), with results expressed as the sperm DNA fragmentation index (DFI). Results: Patients in the exposed group exhibited a significantly higher sperm DFI compared to those in the unexposed group (14 [17] vs. 8 [9], P<0.001). After accounting for potential confounding factors, our results demonstrated that several occupational exposure factors significantly increased the risk of elevated sperm DFI (>15%) levels, including solvents (odds ratio (OR)=8.2, 95% confidence interval (CI)=3.6–18.5, P<0.001), metals (OR=2.2, 95% CI=1.0–4.7, P=0.048), pesticides (OR=14.6, 95% CI=1.6–130.7, P=0.016), mechanical vibration (OR=2.6, 95% CI=1.5–4.6, P<0.001), and heat (OR=6.4, 95% CI=1.7–23.5, P=0.005). Conclusion: The findings of our study corroborate earlier research suggesting that occupational exposures may have adverse effects on sperm DNA fragmentation in men. The identification and management of such exposures as part of routine clinical practice could offer a complementary approach to enhancing infertility treatment outcomes.

Publisher

SelSistem

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3