Author:
Song Yang,Zhang Hao-Jun,Song Xia,Geng Jie,Li Hong-Yi,Zhang Li-Zhong,Yang Bo,Lu Xue-Chun
Abstract
BACKGROUND
Multiple myeloma (MM) is a terminal differentiated B-cell tumor disease characterized by clonal proliferation of malignant plasma cells and excessive levels of monoclonal immunoglobulins in the bone marrow. The translocation, (t)(4;14), results in high-risk MM with limited treatment alternatives. Thus, there is an urgent need for identification and validation of potential treatments for this MM subtype. Microarray data and sequencing information from public databases could offer opportunities for the discovery of new diagnostic or therapeutic targets.
AIM
To elucidate the molecular basis and search for potential effective drugs of t(4;14) MM subtype by employing a comprehensive approach.
METHODS
The transcriptional signature of t(4;14) MM was sourced from the Gene Expression Omnibus. Two datasets, GSE16558 and GSE116294, which included 17 and 15 t(4;14) MM bone marrow samples, and five and four normal bone marrow samples, respectively. After the differentially expressed genes were identified, the Cytohubba tool was used to screen for hub genes. Then, the hub genes were analyzed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. Using the STRING database and Cytoscape, protein–protein interaction networks and core targets were identified. Potential small-molecule drugs were identified and validated using the Connectivity Map database and molecular docking analysis, respectively.
RESULTS
In this study, a total of 258 differentially expressed genes with enriched functions in cancer pathways, namely cytokine receptor interactions, nuclear factor (NF)-κB signaling pathway, lipid metabolism, atherosclerosis, and Hippo signaling pathway, were identified. Ten hub genes (cd45, vcam1, ccl3, cd56, app, cd48, btk, ccr2, cybb, and cxcl12 ) were identified. Nine drugs, including ivermectin, deforolimus, and isoliquiritigenin, were predicted by the Connectivity Map database to have potential therapeutic effects on t (4;14) MM. In molecular docking, ivermectin showed strong binding affinity to all 10 identified targets, especially cd45 and cybb . Ivermectin inhibited t(4;14) MM cell growth via the NF-κB pathway and induced MM cell apoptosis in vitro. Furthermore, ivermectin increased reactive oxygen species accumulation and altered the mitochondrial membrane potential in t(4;14) MM cells.
CONCLUSION
Collectively, the findings offer valuable molecular insights for biomarker validation and potential drug development in t(4;14) MM diagnosis and treatment, with ivermectin emerging as a potential therapeutic alternative.
Publisher
Baishideng Publishing Group Inc.