MACHINE LEARNING BASED CLINICAL DECISION SUPPORT SYSTEM TO PREDICT FETAL HYPOXIA IN WOMEN DURING ANTENATAL CHECK-UP.

Author:

Baxi Sajal1

Affiliation:

1. IIHMR University, 1, Prabhu Dayal Marg, near Sanganer Airport, Maruti Nagar, Jaipur, Rajasthan, 302029

Abstract

BACKGROUND:Most under-five deaths occur within the first month after birth and intrapartum complications are a major contributor to the cause of death. These defects can be easily identified during the ante-natal check-up by use of a non-stress test. Due to the lack of availability of resources and medical experts in remote areas clinical decision support systems powered by machine learning models can provide information to the healthcare provider to make timely and better-informed decisions based on which course of treatment can be planned. AIM:The study aims to develop an accurate and sensitive clinical decision support system model that can identify pathological fetuses based on the fetal heart rate recordings taken during the non-stress test. METHOD: Foetal Heart rate recordings along with 10 other variables were collected from 1800 pregnant women in their third trimester. The data was put through a feature selection algorithm to identify important variables in the set. The data set was randomly divided into 2 independent random samples in the ratio of 70% for training and 30% for testing. After testing various machine learning algorithms based on specificity, sensitivity to accurately classify the fetus into normal, suspected, or pathological Random Forest algorithm was chosen. RESULT:The fetal status determined by Obstetrician 77.85% observations from the normal category, 19.88% from the suspected category, and 8.28% from the pathological category. The Boruta algorithm revealed that all 11 independent variables in the data set were important to predict the outcome in the test set. In the training set the model had an accuracy of 99.04% and in the testing set accuracy was 94.7% (p-value=< 2.2e-16) with the precision of 97.56% to detect the pathological category. CONCLUSION:With the ability of the model to accurately predict the pathological category the CDS can be used by healthcare providers in remote areas to identify high-risk pregnant women and take the decision on the medical care to be provided.

Publisher

World Wide Journals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3