HYPERGLYCEMIA REVERSAL IN DIABETIC INFARCTED RAT POSTINTRAVENOUS INFUSION OF HUMAN MESENCHYMAL STEM CELLS

Author:

Jabeen Sara1,Gupta Usha1,Ahmed Khan Aleem2

Affiliation:

1. Department of Physiology, NIMS Medical College And Hospital, NIMS University, Jaipur- 303121, India

2. Scientist & Head Central Laboratory For Stem Cell Research & Translational Medicine, CLRD, Deccan College of Medical Sciences, Hyderabad, Telangana, India

Abstract

INTRODUCTION Hyperglycemia reversal and preservation/restoration of β-cells function in diabetic infarction remains as an attractive and challengeable therapeutic target. Mesenchymal stem cells (MSCs) are multipotent cells with a strong immunoregulatory potential that have emerged as a possible cell-based therapy for a variety of immunological diseases. The objective of this study was to examine the dose-dependent efcacy of intravenous administration of human umbilical cord blood derived MSCs (UCB-MSCs) in chemically induced rats with diabetic infraction. METHODS Wister rats (weight: 200-250g, males) received intraperitoneal streptozotocin injection followed by isoproterenol to develop diabetes infarction condition. After model development animals received intravenous single or double dose of human 6 UCB-MSCs (5 X 10 cells per animal at each dose) and followed up to 30 days post-administration. Pancreatic tissue histology, blood glucose and insulin levels were measured, and proportion of animal survival was calculated using Kaplan-Meier curve analysis. RESULTS Double dose of MSCs infusion resulted in reorganization of islet cells and partial restoration of β-cells at day 30. Comparatively faster restoration of glucose and insulin normalization was observed for two MSCs doses compared to single dose. Highest proportion of animal survival was observed (>85%) for double doses of MSCs infusion compared to single dose (>70%) at day 30. CONCLUSION Two consecutive intravenous doses of human UCB-MSCs can improve structural and functional decits of pancreatic tissues and maintain blood glucose and insulin levels in diabetic infarcted rats up to 30 days. However, identication of long-term effects entails longer follow-up periods, and larger sample sizes with other investigations.

Publisher

World Wide Journals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3