CARDIAC ADVANCED ARRYTHMIA PREDICTION SYSTEMS- CAAPS

Author:

Radhakrishnan Pradeep Kumar1,Ananyajyothi Ambat Gayathri2,Samhita Saihrudya3,U S Murugan4,Ali Tarig5,Nazer Y A6

Affiliation:

1. MS, MCh CTVS AIIMS, Postdoctoral Fellow ECMO, Postdoctoral fellow CTVS, FACC, FIACS, Global MBA, CPDH IISc, Mentor World Innovation Hub, Chief Division of Cardiothoracic and Vascular Surgery, GIMSR, Gitam University.

2. Medical Student, GIMSR Gitam University, Dr. Sachin Reddy Kasarala, MBBS,GIMSR Gitam University, Dr Nayanika Choudhary T, GIMSR, Gitam University

3. MBBS, GIMSR, Gitam University, Dr Nihas Nazer, MS, MCh CTVS Jayadeva Institute of Cardiology.

4. Mch, Assistant Professor CTVS, TMCH, Dr Arun VIjyakaumar, MD, TMCH

5. MD, CTVS Burjeel UAE

6. MS MCh AIIMS.Director and Professor CTVS TMCH.

Abstract

There is a constant search for novel methods of classication and predicting cardiac rhythm disorders or arrhythmias. We prefer to classify them as wide complex tachyarrhythmia's or ventricular arrhythmias inclusive of malignant ventricular arrhythmias which with hemodynamic compromise is usually life threatening. Long term and fatality predictions warranting AICD implantation are already available. We have a novel method and robust algorithm with preprocessing and optimal feature selection from ECG signal analysis for such rhythm disorders. Variability of ECG recording makes predictability analysis challenging especially when execution time is of prime importance in tackling resuscitative attempts for MVA. Noisy data needs ltering and preprocessing for effective analysis. Portable devices need more of this ltering prior to data input. Deterministic probabilistic nite state automata (DPFA) which generates a probability strings from the broad morphologic patterns of an ECG can generate a classier data for the algorithm without preprocessing for atrial high rate episodes (AHRE). DPFA can be effectively used for atrial tachyarrhythmias for predictive analysis. The method we suggest is use of optimal classier set for prediction of malignant ventricular arrhythmias and use of DFPA for atrial arrhythmias. Here traditional practices of heart rate variability based support vector machine (SVM), discrete wavelet transform (DWT), principal component analysis (PCA), deep neural network (DNN), convoutional neural network (CNN) or CNN with long term memory (LSTM) can be outperformed. AICD - automatic implantable cardiac debrillator, MVA - Malignant Ventricular Arrhythmias, VT - ventricular tachycardia, VF - ventricular brillation,DFPA deterministic probabilistic nite state automata, SVM -Support Vector Machine, DWT discrete wavelet transform, PCA principal component analysis, DNN deep neural network, CNN convoutional neural network, Convoutional LSTM Long short term memory,RNN recurrent neural network

Publisher

World Wide Journals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3