Abstract
В статье предложены следующие отношения эквивалентности в пространстве решений начальных задач для динамических систем. Отношение асимптотической эквивалентности: расстояние между двумя решениями стремится к нулю при увеличении времени, соответствующее фактор-пространство названо асимптотическим фактор-пространством; отношение асимптотической экспоненциальной эквивалентности: расстояние между двумя решениями убывает экспоненциально при увеличении времени, соответствующее фактор-пространство названо асимптотическим экспоненциальным фактор-пространством. Отношение хаусдорфовой асимптотической эквивалентности: неограниченное сближение решений с обратимым преобразованием аргумента с увеличением времени, соответствующее фактор-пространство названо хаусдорфовым асимптотическим фактор-пространством. Показано, что понятие хаусдорфова асимптотического фактор-пространства создает новые математические объекты.
Reference6 articles.
1. Мышкис А.Д. Линейные дифференциальные уравнения с запаздывающим аргументом. – Москва: Наука, 1972. – 351 с.
2. Панков П.С. Асимптотическая конечномерность пространства решений одного класса систем с запаздыванием // Дифференциальные уравнения. – 1977. – том 13, № 4. – С. 455-462.
3. Жээнтаева Ж.К. Асимптотика решений систем линейных операторно-разностных уравнений с переменными коэффициентами // Вестник Кыргызско-Российского Славянского университета. Серия естественные и технические науки. – 2016, № 5. – C. 34-37.
4. Mallet-Paret J., Nussbaum R. D. Asymptotic homogenization for delay-differential equations and a question of analyticity // Discrete and Continuous Dynamical Systems. – 2020, vol. 40, issue 6. – P. 3789-3812.
5. Feher A., Marton L., Pituk M. Approximation of a Linear Autonomous Differential Equation with Small Delay // Symmetry-Basel, 2019, vol. 11, issue 10. – 10 p.